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" Abstract
" The aim of this article is to apply some results of L. Schwartz's theory
of radonifying maps to prove existence theorems for infinite dimensional valued

random variables. As a consequence, we deduce some known results in this di-
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1. Preliminaries

Before we state and prove our main result, we need the following definitions

and propositions from L. Schwartz [3], in the Chapter XIII, pp. 4 and 5.

Definition 1. Let (Q,F,P) be a probability space. Let E be a locally convex

Hausforff topological vector space and let E' be its dual. Let f be a linear
random function frem E' to L°(Q,F,P). f is said to be decomposed if 3 a mea-

surable mapping ¢ from Q to E such that for all £¢E',

o = £(8).

Definition 2. Let E and G be two Banach spaces. Let u be a continuous linear

mapping of E in G. The map t, :G'>E' is said to be p-decomposing (0<sp<®) if
for every linear random function f :E'-*LP(Q,F,P), the composite f ° t, from G'
to LP(Q,F,P) is decomposed by a mapping ¢ from Q to G, ¢ LP(Q,F,P;G) (with

ess sup ll¢|| <= in the case when p=).

Proposition (XIII, 3;2). Let E,G be Banach spaces. Let u be a continuous

linear mapping of E in G. Then u is p-radonifying (p>0) if and only if
ty :G'+E' is p-decomposing.

We also need the fact that if T is a Hilbert-Schmidt operator from one

Hilbert space to another, then it is p-radonifying for all p>0. This is

proved in Chapter XII, p. 2 in [3].

2. Existence theorem

We first prove a simple proposition.
Proposition 1. Let Hl and H2 be two Hilbert spaces and let T be a Hilbert-

Schmidt operator from Hl to H2.

Then, T is p-decomposing for any p>0. Further,

if f is a continuous linear random function from H2 to LZ(Q,F,P), then the

composite f ¢ T is decomposed by a mapping X: Q+H, such that stLZ(Q,F,P:H])
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S [lIxe || “arw) < 2] %)l

N

el where ||TH2 is the Hilbert-Schmidt norm of T.

S ‘
Proof. Since T is Hilbert-Schmidt, its transpose tT from H2 to Hl is also
Hilbert-Schmidt. Hence, it is p-radonifying for any p> 0. Hence, by the J

proposition (XIII, 3;2) mentioned above, its transpose t(tT) which is T is
p-decomposing for any p>0. In particular it is 2-decomposing.

Let f be a continuous linear random function from I—l2 to LZ(Q, ,P). Then
foT is decomposed by a mapping X: Q- Hl such that f||X(w) ||2dP(w) <™,

Let (d)i)ieI be an orthonormal basis for Hl' Then, for all we I,
2 2 2
X[ = ] [<Xw),0,>]" = sup ] [<X(w),0.>]".
iel J iel
J finite 4
Jcl

As the family (Zi€J|<X('),¢i>|2)J, Jec I, J finite, of functions on Q, is

directed increasing, by Lebesgue's monotone convergence theorem, we have

[

T &¢w) ||2dP(w) sup f Y <% (w) ,¢>i>‘2dP(w)
J ieJ
J finite

Jecl

sup ¥ f|<X(w),(bi>|2dP(w)
J iJ

J finite ‘
Jel

I f1<xw,0>1%aPGn).

iel

As f o T is decomposed by X,




<X('),¢i> = f(T(¢i)) for all ie I,

Hence, for all ic¢1I,

fl<x@w) 0> 2ap(w) = [1ET6,)) | apan = [1£]l2]|Tco ) 112,

Hence,

2 2 2 2 2

L fI<x@w),0 > %ar@w) < [1E11° § fTe )il < £l lT]l 7. QED

R i . i 2

iel iel
Theorem 1. Let E be a nuclear space. Let E' be its dual. Let ¢ be a continu-
ous positive-definite bilinear form on E. Then, there exists a probability
space (f,F,P) and a random variable X: Q~+E' such that for all x¢ E, the real-
valued random variable Xx defined as Xx==x° X is Gaussian with mean zero and

the covariance kernel of the process (xx)xe is ¢.

E
Proof. Since ¢ is a positive-definite kernel on E, 4 a real-valued Gaussian

process (Xx)x€ on a probability space (2,F,P) with mean zero and with covari-

E
ance kernel ¢.

Since ¢ is bilinear, it is easy to see that the mapping f from E to
LZ(Q,F,P) taking x to Xx is linear. Further, f is continuous, as ¢ is continu-
ous. Hence, E being nuclear, I neighborhoods U,V of (0), U,V both convex,

A A
balanced and closed, Vc U, EV and E, both Hilbert spaces such that the canoni-

U

A
cal map wU v from EV to EU is Hilbert-Schmidt and such that f admits a factor-
"o ’
‘l.',v"
KRR : : N A A
oo ization Yo WU,VO A
.
el
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where P is a continuous linear and ¢v is the canonical mapping.

As ¢ is Hilbert-Schmidt, by Proposition 1, it is 2-decomposing. Hence,

u,v
A A
Po ¢>U v is ‘decomposed by a mapping Y from Q to E", such that Ye LZ(Q,F,P:E",)
?

wieh ¥l < loll oy o,

Let X be the mapping from Q to E' defined as X= t(p °Y. Then, as Y decom-
\

poses Yo d)U v’ X decomposes Yo ¢U v° Q)V which is f. Therefore, for all xe¢E,
L] b

we have x° X = f(x) =Xx as elements of L°(,F,P),. QED

A
Remark. As the image of E in EV under the map ¢V is dense, the transpose map

A A
td)V from E"l to E' is an injection. Hence, E\" can be thought of as a subspace
of E' algebraically. Hence, the E'-valued random variable X of the above theo-

A
rem is actually E",—valued.

3. Application to known results

We now deduce theorem 3.1 of K. Ité in [2], concerning the existence of
'51'>+2 regularizations, from our proposition 1.

To deduce this, we have only to prove that tne canonical inclusion from

2,
~3p+2 to “Sp is Hilbert-Schmidt with Hilbert-Schmidt norm (%—) 2. This is done

as follows.
We consider ~8p as a sequence space consisting of all the sequences a= (an)neN
such that I la 1“(2n+1)" <,
n=1 n
n n n n n_
Let for all neN, e be the sequence (el,ez,..., ei,...) where e, 6ni'

Lo n
Then it is easily seen that the sequence (f )neN of elements of 9p+2 where

n
n e
f = He“||p+2 is an orthonormal basis for ‘3p+2. ‘
Now 2
jep? - —alle | _@m?
P lle“||i+2 ntD)P*? (2n41)?

‘. - - - -
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Hence

) © 2

2 1 I
LlEflS = ] ——— =%
n=1 " P n=1 (2n+1)2 8

This shows that the canonical inclusion from\s
2,

with Hilbert-Schmidt norm (ES—) 2,

p+2 to ‘Sp is Hilbert-Schmidt

The theorem 1 and the remark following it give immediately as corollary the
existence for all tc« R4_ of a ¢'-valued random variable (actually a H—q random
variable, q € N, independent of t) which is proved in theorem 4.1.1 of [4].
There, ¢ is a countably Hilbert nuclear space.

In the same way, the existence of a S'(RQ)-valued random variable wt, for
all te Ig_ in theorem 2.4 of [1] will follow provided we prove the continuity
of the bilinear form (¢,W)'*IS<QU¢,w>du on S(Iﬂ) XS(BfH. This follows from

the following proposition.

Proposition 2. Let E,F be Frechet spaces. Let for all ue R4, Qu be a continu-

ous linear map from E to F', F' being provided with the topology o(F',F). Let
further, for all (x,y) ¢ ExF, the function u-*<qu,y> be cadlag. Then for all
te I&Q the bilinear form

t

(x,y) - f<Q x,y>du
o U

is continuous on E x F,

Proof. Since E and F are Frechet, to prove that a bilinear form is continu-

ous, sufficient to prove that it is separately continuous. Therefore, we
. t N . .
shall prove that for all ye F, the linear mapping x—>[0<qu,y»du is continuous

on E. Analogously, it will follow that for all xe¢ E, the linear map

t . :
y~>f0<qu,y>du is continuous on F,
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Let ye F be fixed. Let (xn)ne be a sequence of elements of E such that

N
xn->0. Then, for all u, Osuc<t, <qun,y>-*0. Hence the convergence of the

integrals fg<qun,y>du to zero will follow from the dominated convergence

theorem, in case we prove that

< >| <
sup  sup [<Q x ,y>| <.
neN u

O<ust

Now for all u, O0<u<t, the linear map f; from E to R defined as fu(x)=
y

<qu,y> is continuous. As for all (x,y), the real-valued function U'*<qu,y>

(e aBn e o
. o
-

- . . u ,
is cadlag, sgp [<qu,y>|<<n. Hence, the family of linear maps (fy)OSuSt is
O<us<t
L pointwise bounded. As E is Fréchet, it is barreled and hence by the theorem
3 ﬁ' of Banach-Steinhaus, the family (f;)0<u<t is equicontinuous. Hence there

exists a neighborhood U of (0) such that

sup sup |fo(x)| < 1.
X u y
xeU Osust

That is

sup  sup |<qu,y>| < 1.
X u
xeU Osu<t

As xn-*O, d N such that x € U for all n2N. Hence
1

: sup  sup |<Q x ,y>| < o, QED

S n w 0T |

ne N QO<u<t

L)

riv
|
|
|
|
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